Knowledge Organiser: Data representation—Binary and logic gates

Binary vs Decimal

0

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

1111 15

Converting between number bases using binary

Binary to decimal

The binary 10 system is base two 10 and has just two symbols, 0 and 1. The first eight binary place values are:

128	64	32	16	8	4	2	1

To convert binary to decimal 1, simply take each place value that has a 1, and add them together.

Example - binary number 1111100

128	64	32	16	8	4	2	1
0	1	1	1	1	1	0	0

Logic gates

AND Gate

Binary addition: Remember the four magic rules

- 1) Put the binary numbers in columns
- 2)

$$0+0=0$$
 $1+1=10$ $1+0=1$ $1+1+1=11$

- Start from the right, add the numbers in each column together using the rules below
- 4) You can check that you have the **correct answer** by converting everything into decimal together.