Knowledge Organiser: Data representation—Binary and logic gates

Binary vs Decimal

0 = 0

1 = 1

2 = 10

3 = 11

4 = 100

5 = 101

6 = 110

7 = 111

8 = 1000

9 = 1001

10 = 1010

11 = 1011

12 = 1100

13 = 1101

14 = 1110

15 = 1111

Converting between number bases using binary

Binary to decimal

The binary _ system is base two _ and has just two symbols, 0 and 1. The first eight binary place values are:

128	64	32	16	8	4	2	1

To convert binary to decimal (1), simply take each place value that has a 1, and add them together.

Example - binary number 1111100

128	64	32	16	8	4	2	1
0	1	1	1	1	1	0	0

Logic gates

AND Gate

Binary addition: Remember the four magic rules

- 1) Put the binary numbers in columns
- 2) **Start** from the right, **add** the numbers in each column together using the rules below

$$0+0=0$$
 $1+1=10$ $1+0=1$ $1+1+1=11$

- 1 0 1
- 1 1 0
- 4) You can check that you have the **correct answer** by converting everything into decimal together.