

Converting between number bases using binary							
Binary to decimal							
The binary system is base two and has just two symbols, 0 and 1 . The first eight binary place values are:							
128	64	32	16	8	4	2	1
To convert binary to decimal © , simply take each place value that has a 1 , and add them together.							
Example - binary number 1111100							
128	64	32	16	8	4	2	1
0	1	1	1	1	1	0	0

Logic gates

AND Gate

OR Gate

Binary addition: Remember the four magic rules

1) Put the binary numbers in columns
2) Start from the right, add the numbers in each column together using the rules below
3)

$$
\begin{aligned}
& 1+1=10 \\
& 1+1+1=11
\end{aligned}
$$

4) You can check that you have the correct answer by converting everything into decimal together.

